I chose the title Physics from the Edge mainly because the theory of inertia I have suggested (MiHsC) says that local inertia is affected by the Hubble-edge. My webpage is here, my twitters are here. I've written a book on MiHsC also called Physics from the Edge.

Monday, 24 November 2014

Large scales, new rules.

The discovery by Hutsemekers et al. (2014) that quasars (spinning galaxies with jets firing out along their spin axes) are aligned with their neighbours and with the large scale tendrils of visible matter in the cosmos, is a great result. I call papers like this 'signpost' papers in that they indicate experimentally which way to go. The crucial point is that a cosmic scale alignment of spins cannot be explained by dark matter, but it can be explained by MiHsC which predicts that mutual accelerations (including mutual spins) become more important for dynamics on large scales (low accelerations).

For a start, galactic jets are predicted by MiHsC. I wrote a paper in 2008 using MiHsC to explain the flyby anomalies, which are unexplained increases in speed of a few mm/s in spacecraft that approach the Earth at the equator and leave at the pole. MiHsC can model this as follows: when a spacecraft approaches the Earth at the equator, it sees all the pieces of matter in the spinning Earth accelerating towards and away from it and the mutual matter-spacecraft accelerations are large (one can show this mathematically) but when the spacecraft leaves at the pole, along the spin axis, the mutual accelerations between the craft and the matter in the Earth is less, so MiHsC predicts that the leaving craft looses inertial mass and because of the conservation of momentum, it speeds up. This predicts the flybys quite well, though I haven't yet considered all the accelerations involved (McCulloch, 2008). The MiHsC formula for this polar speed-up, which gives a few extra mm/s of speed near the Earth's spin axis, predicts a much larger effect for a bigger object like a galaxy: It predicts that large galaxies should have jets streaming away in both directions along their spin axes (I mentioned this in my book) and this looks very much like a quasar and may also explain the two lobes recently found along the Milky Way's spin axis by the NASA-Fermi team (Finkbeiner et al., 2010).

So, coming back to the new quasar results, from MiHsC you would expect to see quasar-like-objects with jets and long tendrils of visible matter (with lower inertial mass) along the direction of their spin axes giving rise to a filamental large scale structure. Also, with the tiny accelerations found in deep space, you would expect spinning objects to start to align in unexpected ways since MiHsC dominates in that regime and mutual acceleration (spins) become crucial. For an explanation of why two objects might tend to spookily co-rotate because of MiHsC, see McCulloch (2011).

PS: Another intriguing spin alignment was recently discovered in deep space: that between the satellite galaxies of Andromeda and the Milky Way (Ibata et al., 2012).


Finkbeiner et al., (2010) http://www.nasa.gov/mission_pages/GLAST/news/new-structure.html

Hutsemekers et al., 2014. ESO website. http://www.eso.org/public/unitedkingdom/news/eso1438/

Ibata et al. (2012). Nature, 493, 62–65

McCulloch, M.E., 2008. MNRAS, 389, 1, L57. http://mnrasl.oxfordjournals.org/content/389/1/L57.full

McCulloch, M.E., 2011. EPL, 95, 39002. Preprint: http://arxiv.org/abs/1106.3266

Saturday, 8 November 2014

MiHsC Retrospective

I'm still not sure of course whether the emdrive is a real effect or not, but for fun I've written a humorous dialogue about it and MiHsC, so in the spirit of amusement here it is: Kirk, Spock and McCoy travel back to 2014 curious about the early origin of the theories that lead to inertial damping and faster than light travel..

Spock: Captain, I've found some recent references to a theory called MiHsC and an experiment on something called the emdrive.

Captn: Alright Spock, let's have it!

Spock: I'll come to MiHsC in a moment, but the emdrive is a resonant microwave cavity, cone-shaped, that appears to move slightly towards its narrow end..

McCoy: Now just wait a minute Spock, I'm a Doctor not a physicist, but doesn't that violate the old conservation of momentum?

Spock: You are, surprisingly, correct Doctor.

McCoy: Why thank you Spock. I suppose that ends that conversation..

Kirk:  Don't bet on it bones!

McCoy: Sounds like another crackpot lead to me.

Spock: I find it fascinating.

McCoy: Why doesn't that surprise me!? But it still violates momentum conservation.

Spock: Doctor, the medical physics courses you took, even in our time, are still based on old 20th century physics and skim over the new physics, but the Enterprise would not move without it.

McCoy: You're telling me they repealed the conservation of momentum now?

Spock: No, but at this time, humanity is still mostly unaware of the momentum obtainable from the zero point field.

McCoy: But this emdrive looks like baloney: you can't make something move without applying some sort of detectable force!

Spock: Indeed you can if you know how. Even in this backward time period that was possible, though the wider potential was not realised until MiHsC was proposed. Are you aware of the Casimir effect?

McCoy: Forgive me Spock, I was busy curing real people while you were devoting your life to inanimate objects and impenetrable ideas.

Spock: Very commendable Doctor, but the Casimir effect is produced by putting two parallel plates close together, so that they damp virtual particles of the zero point field between them, so that more particles hit the plates from outside them than inside, and so the plates move together very slightly.

McCoy: What's your point?

Spock: The system has moved without a 'detectable' outside force being applied to it.

McCoy: Sounds like a lot of goddamned voodoo to me.

Spock: On the contrary, even at this time the Casimir effect has been observed many times and was the first experimental inkling of the 21st century revolution in physics.

McCoy: Well, be still my heart, but if it's only a tiny effect..

Spock: We have a saying on Vulcan: "If a door is slightly ajar, it's wide open"...and there's a theory proposed in this time called Modified inertia by a Hubble-scale Casimir effect (MiHsC) that brought the zero point field and horizons into physics, and also predicts the emdrive quite well..

Kirk:  MiHsC, MiHsC! That reminds me, Dr Carol Marcus used to go on about a funny old theory called MiHsC that started a paradigm shift and got rid of the need for something called dark matter and energy.

McCoy: Brings back fond memories does it, Jimmy boy?

Kirk:  Bones, as a Doctor you ought to know better than to reopen old wounds.

McCoy: Very funny. I'm sure you've made that joke before.

Kirk:  Good work Spock. It could be the beginning we need..

McCoy: (mumbles) Still sounds like a lot of baloney to me..

Monday, 3 November 2014

The hidden crisis in physics

There are exciting times ahead in physics since new data is rocking old theories and opening up new possibilities, but you wouldn't think it for the horrified faces I've seen at conferences whenever I explain MiHsC. The crisis in physics we now have, downplayed by most, dwarfs the crisis in 1900 which was presaged by Lord Kelvin mentioning what he saw as two insignificant little details 'two clouds on the horizon'. These were the inability of the Michelson and Morley experiment to detect the invisible aether that people thought must exist for light to travel through, and the prediction that hot bodies must radiate infinite amounts at short wavelengths, the ultraviolet catastrophe. The first little cloud led to special relativity and the second to quantum mechanics. These were little experimental acorns that led to huge oak trees because people, typically curious outsiders, realised they were important and worked to bring theory into line.

In the present time we really are spoiled by our new ability to look into deep space, and instead of two modest clouds on the horizon we have something more resembling the childrens' bedroom in the film poltergeist (I saw that film on Halloween) with all the furniture flying around in a mad chaos.

Consider the galaxy rotation problem. Galaxies spin far too fast for general relativity to hold them together, so huge amounts of invisible (dark) matter must be added to them in a weird halo-like formation that has no explanation. There is no experimental evidence for dark matter, and for each different galaxy the dark matter has to be added by hand in such a way as to make general relativity work. This means dark matter is ad hoc and not predictive and so we may as well attribute the rotation to lingering poltergeists. In contrast, MiHsC predicts galaxy rotation without any 'fiddling'.

Now considering cosmic expansion: this is accelerating, an act that requires a tremendous input of energy from somewhere. The problem cannot be solved by a mathematical and linguistic trick, as it is done, by simple adding a term to the Einstein field equation and calling it dark energy. It must be fundamentally understood. MiHsC explains this acceleration in an intuitive and elegant manner by disallowing any pattern, including radiation, that does not fit exactly within the Hubble scale.

There is also a telling anomaly in the Cosmic Microwave Background, which looks too smooth on the largest scales in a way that agrees exactly with the suppression of large scale patterns by MiHsC.

If we enter more controversial territory, the fertile ground where observations that can't be made to fit current theory but have not yet been proven wrong are found: the Pioneer craft slowed down as they entered deep space in agreement with MiHsC (the thermal explanation now apparently 'accepted' relies on complex models with over 2000 finite elements, and fitting parameters). The flyby anomalies, odd dynamics of spacecraft passing Earth, are also predicted by MiHsC, as are the Podkletnov and Tajmar experiments, and the EmDrive anomaly found in the UK, China and at NASA.

I hope you can see that if you take all the evidence together, then at low accelerations (in deep space), or when you change the acceleration by spinning something (flybys, Podkletnov, Tajmar experiments) or you bring the Hubble horizon artificially closer to disallow more patterns (the EmDrive) standard physics fails, but MiHsC does not.

Sunday, 26 October 2014

MiHsC vs Emdrive: updated table

I have updated the Table comparing the predictions of MiHsC with the available, fully-documented, emdrive experimental results, including a 6th result that I've just found online: that of the Cannae drive of G. Fetta (I take it as an emdrive because the grooves cut into it were found by NASA to make little difference). I've shown the predictions of the 1-dimensional MiHsC formula (which is preliminary) which assumes that accelerations are produced by the radio frequency oscillations:

F = PQ/f * ((1/w_big)-(1/w_small))              MiHsC1

where P is the input power, Q is the Q factor, f is the input frequency, w_big and w_small are the widths of the end plates. I have also shown the predictions of an alternative formula (MiHsC 2) that assumes that the accelerations are caused by photons bouncing at the cavity ends, and includes the cavity length (s) and speed of light (c):

F = PQs/c * ((1/w_big)-(1/w_small))            MiHsC2

See the new table below. The first column shows the experiment (S=Shawyer, C=Cannae and B=Brady), the other columns show the diameters of the big and small (two estimates) cavity end plates, the Q factor, power input, frequency, and the last three columns compare the predictions of MiHsC1 and MiHsC2 with the observed force (in bold):

Expt     Q       Power     Freq'   w_big   w_small      s     MiHsC1  Observed  MiHsC2
                      Watts      GHz       cm        cm          cm      (--------milliNewtons--------)
S a      5900     850       2.45       16        12.750   15.6     3.26         16            4.15
S b    45000   1000       2.45       28        12.890   34.5   76.90      80-214    216
C a     1.1e7       10.5    1.047     22        20            3.0   50.14       8-10           5.25
B a      7320       16.9    1.933     39.7     24.4       33.2     0.10       0.0912       0.22
B b    18100       16.7    1.937       "           "          33.2     0.25       0.0501       0.53
B c    22000         2.6    1.88         "           "          33.2     0.05       0.0554       0.10

MiHsC1 underestimates the Shawyer (2008) experiments (S), predicts five times the Cannae result (C), and agrees with the NASA / Brady et al. (2014) a and c results, but not case b where it overestimates by a factor of five. The Cannae drive (C) has a very different geometry to the others (the width is 22cm, the length is 1cm) and this difference is useful for testing. MiHsC2 is perhaps comparable in success, but does less well for the NASA results (the most accurate?) which may be because of the 1-d limitations of my approach, or it could mean that it is the radio frequency oscillation that is driving the acceleration that causes the Unruh radiation (MiHsC1) rather than the microwave photons physically bouncing between the plates (MiHsC2).

Thanks to Dr J. Rodal for correcting my cavity dimensions again! The source of the Cannae experiment geometry and results is:  http://web.archive.org/web/20121104025749/http://www.cannae.com/proof-of-concept/design see also the experimental results section.

Friday, 24 October 2014

MiHsC: motion from logic.

The advantages of MiHsC are that is simple, it follows logically from very few assumptions and it predicts anomalies no other theory can without needing the infinite adjustability of dark matter (in fact MiHsC has zero adjustability).

Understanding MiHsC is simple: consider an object, say Spock in a spacesuit, in a vacuum. Everywhere around him is the zero point field, a sea of virtual particles predicted by Heisenberg's uncertainty principle and whose existence Spock notes has been proven by experiments on the Casimir effect. Pairs of these virtual particles are always forming and recombining quickly. The zero point field usually has no effect on Spock in a vacuum because it is usually weak and uniform in space and so virtual particles bang into Spock from all directions equally so there is no net force.

Now imagine Spock fires a back pack rocket motor and accelerates forward. He might then look behind him and tell McCoy on the static Enterprise that logically he can now never see things more than a certain far distance away because information from that far away traveling at the speed of light will never catch up to him as he accelerates. At this distance, then, is a horizon, which only exists in Spock's reference frame, so McCoy on a static Enterprise would look for the horizon, not see it, and tell Spock grumpily that he's getting  carried away by his own logic again. Nevertheless, at that distant horizon virtual particle pairs that form can now be separated because one of them goes away from Spock and is lost forever behind the horizon and one will come towards him. The virtual particles that would have recombined, now never will, and Spock will see particles and radiation all around him: Unruh radiation, just like the Hawking radiation from black hole horizons, but caused by acceleration not gravity.

Radiation is a kind of wave so its waveform must 'fit' exactly within the cosmos. Why? Well, because if the wave didn't fit exactly then it would go through the horizon and we'd then be able to know something about what lies behind the horizon, so it wouldn't be a horizon anymore. So some of the Unruh waves in front of Spock are disallowed by the cosmic horizon and disappear in a puff of logic and Spock raises his eyebrow approvingly. This is only a small effect though, and it makes a big difference only if accelerations are tiny, as they are at the edges of galaxies (this part of MiHsC correctly accounts for galaxy rotation without needing dark matter). Now behind Spock the waves must fit between Spock and the new horizon, which is much closer than the cosmic edge, so more waves are disallowed by logic behind him. This means more Unruh radiation hits Spock from in front than from behind, and this makes a force that opposes his acceleration and predicts the phenomenon we know as inertia (see the references below for more detail).

This is the basis of MiHsC, & I think Spock would love it, because is shows how quantum mechanics (that provides the zero point field), relativity (that makes the horizon) and his beloved logic (that disallows non-fitting waves) can work together in a new way to make something as fundamental as inertia, and also solve a few problems that the old physics cannot.


McCulloch, M.E., 2013. Inertia from an asymmetric Casimir effect. EPL, 101, 59001. http://arxiv.org/abs/1302.2775

McCulloch, M.E., 2014. Physics from the edge. World Scientific.

Sunday, 19 October 2014

EmDrive, MiHsC & horizon physics

The small anomalous acceleration of the emdrive (which is like a microwave oven built into a copper cone) towards its narrow end, may or may not be a real effect, but is proving to be a lot of fun to think about. I've written before about 'thinking in the context of a real experiment' and I think that is lacking in mainstream theoretical physics where people incessantly drop objects into imaginary black holes. Looking for new physics one must look for 'direct' observations that disagree with the old physics, and the emdrive is a great example of that, and one that has been reproduced in three different labs. It turns out that MiHsC predicts it quite well (see this entry, and for MiHsC, see McCulloch, 2013, 2014, references below). Specifically MiHsC predicts a force of

F = PQ/f * ((1/w_big)-(1/w_small))     (1)

where P is power input (Watts), Q is the number of photon 'bounces' before they are absorbed, f is the input microwave frequency (Hz) and w_big and w_small are the diameters (metres) of the big and small emdrive end plates. Last night I worked out how to prove this formula from first principles so I'm now much happier about it. I've also tried replacing f with c/CavityLength=c/s, where c is the speed of light. This is because in the derivation the f is the frequency of Unruh radiation seen by the photons, and this is determined not by the microwave frequency, but by the cavity length which forces the microwave photons to change direction back and forth, and it is this that does the accelerating. This gives the similar formula

F = PQs/c * ((1/w_big)-(1/w_small))     (2)

Now, you may be saying 'for photons the rules are different', but ultimately, causes must be universal and photons do have inertial mass, the source of radiation pressure (it is only the photons' rest mass that is zero) and if they have inertia, then according to MiHsC this is caused by Unruh radiation (which is more than just em radiation) and for the huge accelerations of these photons as they bounce between the ends of the cavity the Unruh waves are short enough to 'see' the cavity and be damped by its walls (as electrons move to cancel the field there). They will be more damped at the narrow end, meaning they will have less inertial mass at that narrow end. This means that, for each photon bounce, more mass goes from the narrow to wide end than the other way around, and so to balance the books the conservation of momentum demands a force towards the narrow end of a size as in Eq. 1 or Eq. 2. The best defense of this model is that it works quite well. For the results of Eq. 1 see two blogs back, and Eq. 2 predicts the following for the five experiments for which complete information is available (excluding the Chinese experiments whose geometry is unknown). Table:

Experiment                P              Q         s        w_big    w_small     Observed    Predicted
(see refs)                  W             dl         m           m             m           (mN)          (mN)
Shawyer (expt)       850          5900    0.156     0.16       0.11            16                7
Shawyer (demo)   1000        45000    0.345     0.28       0.17          147            123
Brady et al. A            16.9       7320    0.332     0.397     0.244            0.09           0.22
Brady et al. B            16.7     18100    0.332     0.397     0.244            0.05           0.53
Brady et al. C              2.6     22000    0.332     0.397     0.244            0.06           0.10

The table shows that the MiHsC predictions (the last column) agree quite well with the data (the second to last column), except for the second Brady et al. (2014) experiment. More experimental data is urgently needed, but this suggests tentatively that MiHsC can be applied to light in cavities, and this opens up a whole new area for testing. I have submitted a paper on this, so let's see what the reviewers say. Note: Thanks to Dr Jose Rodal, aero & John Fornaro (NSF forum) for clarifying the emdrive geometry.


Brady, D., et al., 2014. Anomalous thrust production from an RF test device measured on a low-thrust torsion pendulum. Conference proceedings, see Table page 18. Link

Shawyer, R., 2008. Microwave propulsion - progress in the emdrive programme. See section 6, page 6. Link

McCulloch, M.E., 2013. Inertia from an asymmetric Casimir effect. EPL, 101, 59001. http://arxiv.org/abs/1302.2775

McCulloch, M.E., 2014. Physics from the Edge, published by World Scientific. Link

Saturday, 11 October 2014

In support of empiricism

I find it strange that those who support theories like dark matter, dark energy and string theory always respond to MiHsC by saying that it needs more evidence, as if they had some irrefutable evidence tucked away in a drawer somewhere! They have none. They are putting dark matter into galaxies because they blindly trust general relativity (GR), and they want it to predict the right rotation curve given the stars they can see, but they have absolutely no reason to trust general relativity here, because it has never been tested at low accelerations, only at high accelerations, for example with Gravity Probe B, orbiting binary pulsars and the perihelion of Mercury. The acceleration of a star at a galaxy's edge is more than ten orders of magnitude lower. The last time someone tried to extrapolate a theory ten orders of magnitude was when they tried to apply classical physics to the atom, and that went well...

It is clear to me how proper physics was done by the people I admire: Strato of Lampsacus, Galileo, Newton, the early-Einstein, 'Back of the Envelope' Fermi, Stommel & dear old Feynman and partly because of this, and my background in the more testable physics of the ocean, I have developed MiHsC consciously by looking directly at the observations (empiricism), particularly interesting anomalies, and deliberately avoiding the mainstream hypotheses and fashions, because to be frank they are vague, unimaginative, overly-complex and untestable.

As a result of this data-driven approach I can model the Pioneer anomaly well (yes, controversial), the flyby anomalies fairly well, the Tajmar effect well, dwarf galaxy, spiral galaxy and galaxy cluster rotation without dark matter, cosmic acceleration without dark energy, and the low-wavelength CMB anomaly. It seems all the mainstream can do is patch GR using dark matter in increasingly bizarre shapes and forms: they may as well attribute it all to 'God's stirring spoon' and join the clergy. Revered theories die hard, especially if there is no evidence for them!