I chose the title Physics from the Edge because the theory of inertia I have suggested (MiHsC) assumes that local inertia is affected by the far-off Hubble-edge. My webpage is here and I've written a book on inertia and MiHsC which is also called Physics from the Edge.

Thursday, 23 April 2015

The Magnificent Anderson


John D. Anderson has done it again! It seems every few years he discovers a fascinating anomaly, and his papers are great for data-driven theorists like me because he publishes while freely admitting not to know the cause: old-style empiricism.

In 2005 I read the mammoth papers of Anderson et al. (1998, 2002) which first presented the Pioneer anomaly to the world (although most now consider this explained with a complex thermal model, I do not agree). In 2008 I read his (to me) 'mind-bomb' observational paper on the spacecraft flyby anomalies in which he pointed out an intriguing symmetry of these anomalies about the Earth's spin axis, which at the time sent me into a roller coaster of emotions, made me obsessed with applying MiHsC to it, and stimulated me into realising that MiHsC could explain it if I used 'mutual' accelerations (discussion). A crucial step.

Now he's back with a paper in the journal EuroPhysics Letters (Anderson et al., 2015, see refs) looking at the values of Newton's gravitational constant (big G) that have been puzzling alert physicists for years. G can be measured by suspending a dumbbell arrangement of two masses from a wire and then bringing a known mass up to a distance r away from one of them, and measuring the twist in the wire to work out the force (F) of gravitational attraction. Newton's F=GMm/r^2 then gives you G because M, m, r and F are known. Mysteriously, the 13 recent values of G found using this method vary by more than the likely error in the experiments, which suggests the real uncertainty is bigger, because something unexpected is going on.

The new result is that Anderson et al. (2015) have found that most of the 13 values of G vary with a pattern: a sine curve with a period of 5.899+/-0.062 years. Intriguingly they point out that Holme and de Viron (2013) showed that the length of our day varies with the same period. Anderson et al. (2015) argue that the changes in G cannot be causing the length of day changes, since a greater G would shrink the planet, spinning it up and reducing the length of day: the opposite to the correlation seen. It is possible that something else is influencing both G and the length of day, but what?

I've been fascinated by these unexplained variations in G for a while, and I attended a Royal Society workshop about it last year. I have found a 'weak' correlation in values of G with latitude, and I have been trying to investigate links with MiHsC, with no success so far. The new periodic pattern in G shown up by Anderson's paper is a potential clue, and at the limit of science any clue is priceless.

References

Anderson, J.D., G. Schubert, V. Trimble, M.R. Feldman, 2015. Measurements of Newton's gravitational constant and the length of day. EPL, 110, 10002. Paper

Holme, R. and O. de Viron, 2013. Nature, 499, 202. Paper

End of The Magnificent Amberson's by Orson Welles: Old-style George Amberson wanders around a polluted city, confused and disoriented by the industrial society that has developed around him.

Saturday, 18 April 2015

Doubtful to the end

Aristotle said "The mark of an educated mind is to be able to entertain an idea without necessarily accepting it" and I'd say the mark of a health society is to be able to discuss any idea openly without censoring it. This applies to physics too. I developed MiHsC by looking at controversial data like the Pioneer anomaly (even more controversial now!) with an attitude of not necessarily accepting the anomaly, but just seeing whether it was explainable in a new way. As soon as you start either blindly believing in what you are doing, or on the other hand become too wary of what others think, you become sterile and lose the sense of curiosity or fun that is necessary to continue. I remember Feynman once felt he got himself out of a sterile hole by writing 'Disregard (others)' on his blackboard. In science, doubt and data are crucial.
 
This is a creeping problem in our society, in that avenues of exploration are being closed down and data is being ignored by people who feel they have the final answer. No-one has the final answer, and if someone ever claims to, speak calmly and run quickly! It's best to allow everyone's ideas to be debated openly, because you never know where a useful answer will come from. Look at physics: the first action-at-a-distance theory of gravity was inspired by Newton's obsession with alchemy, back then a dangerous and wrong-headed idea, but nevertheless stimulating. If a problem has been around for awhile, like galaxy rotation today, the answer never comes from an acceptable direction, because those have been tried already.

This is a quote (from Pais, 1982) that has intrigued me for years: 'Einstein wrote this to his old friend M. Besso, one year before his (E's) death: "I consider it quite possible that physics cannot be based on the field concept, ie: on continuous structures. In that case nothing remains of my entire castle in the air, gravitational theory included and the rest of modern physics".'. This shows that although Einstein's main thrust was in the opposite direction to me (from general relativity to quantum mechanics), he had a healthy doubtful attitude to the end, and occasionally considered non-continuum physics, eg: horizons, which MiHsC is based on.


References

Pais, A., 1982. Subtle is the Lord (see page 467).

Friday, 10 April 2015

Abstract for NAM2015

Here's the abstact I recently submitted to the 'Cosmology Beyond the Standard Model' session of the UK's National Astronomy Meeting 2015 (NAM2015). Hopefully they'll accept it, but, if not, it can have its day in the sun here:

Testing quantised inertia on cosmological scales
Mike McCulloch

The galaxy rotation problem and cosmic acceleration both occur in extremely low acceleration environments. It is shown that these anomalies can be explained by a model that assumes inertial mass is caused by the effect of horizons on Unruh radiation. The wavelengths of this radiation become longer for low accelerations so that a larger proportion of the radiation spectrum does not fit exactly within the Hubble horizon (and partial waves would allow us to infer what lies behind the horizons, which should not be allowed). This model (called Quantised Inertia or MiHsC) leads to a predicted new loss of inertia at very low accelerations and so predicts galaxy rotation and cosmic acceleration, and some other anomalies, without adjustable parameters. It also suggests a reason for the large-scale cosmic microwave background anomaly recently confirmed by the Planck satellite. The model needs to be tested more rigorously on the galactic scale, hence the need to present at NAM 2015 to make contacts to help with this.

Wednesday, 8 April 2015

Physics X

In 1665, Henry Oldenburg started the journal called: Philosophical Transactions of the Royal Society. This was one of the first scientific journals, and it presented new observations in pure form without necessarily any theory attached, so that theorists could think about the observational data in whatever way they wanted. The Royal Society also had a motto "Take no one's word for it" which freed them up from the old theories of giants like Aristotle and enabled them to look at new data unbiased. This kind of attitude led to the first great blossoming of modern physics in the form of Robert Hooke and Isaac Newton.

This data-first attitude is in danger in modern physics and needs to be resurrected (the ancient Greeks had about 300 years of observational scientific discovery and then detached from nature to reflect on abstract philosophies. There are signs that we are too, with untestable string theory..etc). As an example, at a scientific meeting of the Royal Society on big G, I mentioned to a bigwig over breakfast that the unexplained variations in big G had a dependence on latitude (this dependence is weak, but present). He discounted this immediately by saying 'No, there's no mechanism to explain that'. This sort of theory-first thinking is very common now, and it is exactly the wrong attitude. If an anomaly appears, it is worthy of inspection, particularly if it disagrees with theory. This common sense has somehow been lost and physics has become a self-congratulation club detached from nature. Feynman lived long enough to see the beginning of this rot, and critically said in his tough Brooklyn accent: 'Nature will come out as she is!', meaning that human expectations are not relevant, only the data is, and indeed Nature is happily being weird with increasing frequency: anomalous galaxy rotation, spacecraft anomalies, superconductor anomalies, muonic hydrogen proton radii, LENR, cosmic acceleration, sonoluminescence, the emdrive, large scale CMB anomalies, aligned quasars and many more mysteries. The only response of mainstream physics so far has been to attribute some of the deviations to invisible entities, as if we're back in the middle ages, and it doesn't help that it is almost impossible for experimentalists to publish many of these anomalous results.

That is why I think there should be a new journal, a rebooted 'Transactions' if you like, but maybe called 'Anomalies' or 'Physics-X' which publishes anomalous observations, so long as they have been carefully done with attention paid to errors. This is the most useful kind of observation. I think this would be the best way to jump start physics and get people to look up from old books and look at the new anomalies out there in the real world, some of which I have discussed in my previous blogs (and some of which can be explained by MiHsC). We don't have to decline into untestable metaphysics like the ancient Greeks (string theory..etc) and end up back in a dark age. Instead, like Asimov's Hari Seldon, we can take action now to keep physics looking at the real world and moving forward.

Sunday, 29 March 2015

Dark matter contradicts itself.

There has just been a study published in Science (Harvey et al., 2015) that is interesting because it forces the dark matter hypothesis to contradict itself.

Harvey et al. have looked at the light from familiar objects like galaxies as seen from behind galaxy clusters, and looked at the distortion in the images due to gravitational lensing. They know what a typical galaxy looks like: a disc, so if it looks like a U-bend instead when it's behind the galaxy cluster, then they can infer the bending of the light that must be occurring and assume this bending is due to dark (invisible) matter in the cluster. They looked at 72 galaxy cluster collisions, and have modeled the collisions using several kinds of dark matter, and have shown that the only kind of dark matter that fits the observations, is a kind that doesn't interact with itself. I'd like to point out here that this makes the dark matter hypothesis self-contradictory since it is well known it must repel itself to stay spread out in the halo of galaxies, and yet this study now shows it must not interact with itself. So dark matter dissappears in a puff of logic? Well, I'm sure someone will think of a way to make it more complex to save the hypothesis, but it gets ever more ridiculous.

In contrast MiHsC says that there is no dark matter (see my blog here and my paper here) and that the light is bending because its inertial mass varies due to the variation in acceleration within the cluster. I know the inertial mass of light is a controversial issue, but it has never been well understood, and MiHsC predicts galaxy rotation, cosmic acceleration, the flyby anomalies, the emdrive (light in a box) and many other anomalies quite well without invisible entities or contradictions (Introduction to MiHsC).

References

Harvey D, Massey R, Kitching T, Taylor A, Tittley E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 27 March 2015. Read more at Phys Org

McCulloch, M.E., 2012 Testing quantised inertia on galactic scales. Astrophysics & Space Sci., 342, 575-578. Preprint. Journal.

Saturday, 21 March 2015

One-wave MiHsC and the EmDrive

MiHsC (see an introduction) assumes that inertia is caused by a radiation pressure from Unruh radiation, and that the waves of this radiation are only allowed to exist if they have nodes at information horizons like the Rindler (local) or Hubble (cosmic) horizon, because if they didn't have nodes there, we could infer what lies behind the horizon and it wouldn't be a horizon (logic/information affects local physics).

So far with MiHsC I've used an approximation, and assumed that as accelerations decrease, then the number of waves in the Unruh spectrum decreases linearly as they are disallowed by the horizon, and so the inertial mass decreases in a new way (predicting galaxy rotation without dark matter...etc). I can get away with this because the accelerations are rarely small enough that only one or two Unruh waves fit.

To apply MiHsC to the resonating emdrive (a truncated metal cone), and probably to very low cosmic accelerations too, I need to consider individual Unruh waves. So I have recently tried an alternative approximation of MiHsC that assumes that there is only one wave at the peak of the Unruh radiation spectrum and this wave either fits or doesn't within the horizon (which for the emdrive, is its walls). This leads to a prediction for the anomalous force on the emdrive (F) like this

F = -PQ/c * (|sin(pi*w_small/L)|-|sin(pi*w_big/L)|)

where P is the input power, Q is the quality factor, c is the speed of light, w_big and w_small are the diameters of the big and small end plates of the emdrive, and L is its length. As you can see I'm using the magnitude of a sin function to decide whether the Unruh wave (only one now) fits within the walls or not, at the wide end and the narrow end. This Table shows how the results differ from what I had before:

Experiment       Observed      MiHsC2d    OnewaveMiHsC
                                     ----  milliNewtons ----
----------------------------------------------------------------------
Shawyer 1             16               4.1              7.7
Shawyer 2           147           148.9            54.7
Cannae drive           9               5.3              4.3
Juan et al. A         214           154               39
Juan et al. B         315            241              61
NASA B1                 0.09          0.26            0.07
NASA B2                 0.05          0.63            0.18
NASA B3                 0.06          0.12            0.03
NASA vacuum        0.03          0.70            0.20

As you can see, I've used the 2d (two-dimensional) version of spectrum-MiHsC to compare with the 2d one-wave MiHsC, for a fair comparison. I've shown the Cannae and Juan (2012) cases in red because I'm not confident I have the right geometry for them. MiHsC predicts that (usually) photons are more likely to see a resonating Unruh wave at the wide end, so the photons' inertia increases as they go towards the wide end and to conserve momentum the whole cone then has to move the other way. As you can see, the new formulation is much better for the NASA data but worse for the more powerful of the Shawyer experiments (I still don't know the uncertainties in the data).

Interestingly, this approach predicts there can be a reverse mode for the emdrive (not a particularly bold prediction I admit since NASA may have seen a reverse already). MiHsC predicts this reverse occurs if you 'tune' the Unruh waves to fit better into the narrow end.

I've been trying to develop a one-wave version of MiHsC for application to cosmology for ages, the emdrive is useful (if real) because it provides data on which to test progress.

Thursday, 12 March 2015

Predicting Proxima Centauri's Orbit

The best way to persuade others to accept a new paradigm is to find an anomaly that embarrasses the old one. The galaxy rotation problem should be such a thing, but the old theory has been saved by dark matter which is flexible enough to fudge a solution.

The goal then is to find an anomaly for which dark matter cannot work. Its Achilles' heel is scale, since, to work for full-sized galaxies, dark matter must have a tendency to spread out smoothly to explain why it stays out in the galactic halo, so dark matter shouldn't effect dynamics on smaller scales. One possible test then is to use globular clusters, smaller bound collections of stars within galaxies. They do indeed show a very similar rotational anomaly (Scarpa et al., 2006) but they are not simple enough to provide a clean test. Smaller and simpler are wide binary stars and again, a similar, orbital, anomaly has been seen (Hernandez et al., 2011) but the data is still too noisy. Recently, I've become interested in a wide 'trinary' for which the data is a bit better: our closest neighbour: the Alpha Centauri system.

I've talked about this before: this triple star system is interesting because the first two stars orbit close together so their masses are well determined from their orbits, but the third star orbits far from them in a low acceleration regime where MiHsC should apply. Sure enough, there is an anomaly. The third star, Proxima, has an orbit that is so fast that it should spin off into deep space with the centrifugal force, since the known mass of the the other two stars is too small to gravitationally bind it. Yet, other data, for example the similar chemistry of the three stars and the fact that they all seem to move together in the sky suggest that Proxima is bound to the system, but according to Newton, it can't be with that fast orbit.

This makes a nice experiment because the mass of the central two stars can't be increased to bind Proxima (their masses are too well known) and dark matter can't be used either (too small a scale). MoND (Modified Newtonian Dynamics) can be applied here, and can be thought of either as an increase in the gravitational constant, or a decrease in the inertial mass, but MoND has no physical model (no reason) behind it and it needs an adjustable parameter called a0 to be set by hand, again with no apparent reason.

MiHsC can also be used to predict the orbit, and it has a clear reason, and no adjustable parameters are needed. It predicts that the low acceleration of Proxima reduces its inertial mass so it can more easily be bent into a bound orbit by the small observed mass of the central two stars. The observed orbital velocity of Proxima and the various predictions of it are as follows:

Observed = 0.53 +/- 0.14 km/s   (to be improved by new ESA GAIA data)

Newton    = 0.34 +/- 0.02 km/s   (no wriggle room)
MoND      = 0.42 +/- 0.2 km/s    (if a0 is set to 1.2*10^-10 m/s^2)
MiHsC     = 0.65 +/- 0.02 km/s   (no wriggle room)

Newton and Einstein disagree with the data (unless the assumed orbit is extreme, which it could be) and dark matter can't be applied to this case. Both MoND and MiHsC agree with the data, and so they reconcile the chemical, co-moving and orbital data, but MiHsC does it with a reason and without the need for an adjustable parameter. I have just submitted a paper on this, so a reviewer somewhere is having fun.

References

Hernandez, X., M.A. Jimenez and C. Allen, 2011. Wide binaries as a critical test of classical gravity. Euro. Phys. J. C., 72, 1884. Preprint.

Scarpa, R., G. Marconi, R. Gilmozzi, 2006. Globular clusters as a test for gravity in the weak acceleration regime. Proceedings of the 1st crisis in cosmology conference. Am. Inst. Phys Proceedings series, Vol. 822. Preprint.